Leading Opinion

A double-chamber rotating bioreactor for the development of tissue-engineered hollow organs: From concept to clinical trial

M. Adelaide Asnaghia,*, Philipp Jungebluthb, Manuela T. Raimondic,d, Sally C. Dickinsone, Louisa E.N. Reesf, Tetsuhiko Gob, Tristan A. Coganf, Amanda Dodsonf, Pier Paolo Parighettg, Anthony P. Hollandere, Martin A. Birchallh, Maria Teresa Conconig, Paolo Macchiarinib, Sara Manteroa,*

a Department of Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
b Department of General Thoracic Surgery, Hospital Clinic de Barcelona, University of Barcelona, c Villaaroel 170, E-08036 Barcelona, Spain
c LabS, Department of Structural Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
d IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161 Milan, Italy
e Department of Cellular and Molecular Medicine, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
f School of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS40 5DU, UK
g Department of Pharmaceutical Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
h Department of Clinical Medicine at South Bristol, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK

\textbf{A R T I C L E I N F O}

Article history:
Received 22 June 2009
Accepted 10 July 2009
Available online 3 August 2009

Keywords:
Bioreactor
Tissue engineering
Co-culture
Oxygenation
Stem cells
Airway transplantation

\textbf{A B S T R A C T}

Cell and tissue engineering are now being translated into clinical organ replacement, offering alternatives to fight morbidity, organ shortages and ethico-social problems associated with allotransplantation. Central to the recent first successful use of stem cells to create an organ replacement in man was our development of a bioreactor environment. Critical design features were the abilities to drive the growth of two different cell types, to support 3D maturation, to maintain biomechanical and biological properties and to provide appropriate hydrodynamic stimuli and adequate mass transport. An analytical model was developed and applied to predict oxygen profiles in the bioreactor-cultured organ construct and in the culture media, comparing representative culture configurations and operating conditions. Autologous respiratory epithelial cells and mesenchymal stem cells (BMSCs, then differentiated into chondrocytes) were isolated, characterized and expanded. Both cell types were seeded and cultured onto a decellularized human donor tracheal matrix within the bioreactor. One year post-operatively, graft and patient are healthy, and biopsies confirm angiogenesis, viable epithelial cells and chondrocytes. Our rotating double-chamber bioreactor permits the efficient repopulation of a decellularized human matrix, a concept that can be applied clinically, as demonstrated by the successful tracheal transplantation.

1. Introduction

There are many clinical situations in which it would be desirable to replace hollow organs, such as airways, bowel and bladder, with functional substitutes, and where conventional means of reconstruction are inadequate. Recently, there has been growing optimism that cell-, including stem cell-, based tissue-engineering methods may effectively replace the structure and function of these organs, and there have been early clinical successes with bladder [1] and, most recently, trachea [2]. Although bioreactors have played a central role in tissue engineering for two decades [3,4], this new need to sustain the diverse requirements of complex organ constructs demands a correspondingly intelligent bioreactor environment.

The trachea is an ideal model for early clinical translation of bioreactor-based tissue-engineering technology: it is a relatively simple conduit without intrinsic motility and there is a clear clinical need for large airway grafts [5,6]. A clinically applicable tracheal substitute must meet numerous requirements: an external hyaline cartilage framework and an internal epithelial covering are
essential [5,7,8]. Although there are reports of small volumes tracheal cartilage generation and clinical application [9–14], progress with long segment grafts has been limited by lack of an ideal scaffold, well-established epithelial and chondrocyte culture techniques, and an appropriate bioreactor environment.

Key requirements of a tracheal bioreactor are (a) the provision of different culture conditions on either side of the organ wall, and (b) the need for adequate mass transport of gases and nutrients within a construct that has to be more than 4 cm long to be clinically useful [5]. Based on these criteria, we developed a step-wise work plan consisting of the following: design of a bioreactor, development of predictive analytical models, in vitro testing, in vivo trials in animal model, application of human cells and performance of a first-time-in-man transplantation of the resultant recellularized construct.

2. Materials and methods

2.1. Bioreactor design

Objectives of the bioreactor design were: (1) to facilitate cell seeding procedures on both sides of a 3D tubular matrix, ensuring homogeneous plating; (2) to allow seeding and culturing of different cell types on either side of the tubular scaffold; (3) to enhance oxygenation of the culture medium and mass transport (oxygen, nutrients and catabolites) between the medium and the adhering cells; (4) to stimulate the cells with hydrodynamic stimuli, favoring the metabolic activity and the differentiation process; (5) to allow the achievement and maintenance of sterility and other criteria of Good Laboratory Practice (GLP), simplicity and convenience and (6) to permit the possibility of automation and scale-up/-out. Thus, a rotating double-chamber bioreactor was designed: the device allows confined seeding and culturing on both surfaces of a tubular matrix and includes rotatory movement of the scaffold around its longitudinal axis. By immersing half of the construct in media at any one moment, cells are cyclically exposed to gaseous exchange with long segment grafts has been limited by lack of an ideal scaffold, well-established epithelial and chondrocyte culture techniques, and an appropriate bioreactor environment.

Key requirements of a tracheal bioreactor are (a) the provision of different culture conditions on either side of the organ wall, and (b) the need for adequate mass transport of gases and nutrients within a construct that has to be more than 4 cm long to be clinically useful [5]. Based on these criteria, we developed a step-wise work plan consisting of the following: design of a bioreactor, development of predictive analytical models, in vitro testing, in vivo trials in animal model, application of human cells and performance of a first-time-in-man transplantation of the resultant recellularized construct.

2.2. Oxygenation

A crucial consideration was whether it would be theoretically feasible to support the oxygenation needs of a large, cellular organ construct within a rotating bioreactor. To explore this fundamental question, a mathematical model was developed and used to predict oxygen concentration profiles in tissue constructs of a clinically relevant thickness (1 mm), with varying oxygen consumption rate, colonization depth, and density of cells. Transport of oxygen in the construct was described by the mass conservation law in diffusion reaction

\[
\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - V
\]

where \(c\) is the molar concentration, \(D\) is the diffusivity coefficient through the construct, \(V\) is the molar rate of consumption per unit volume. The following assumptions were made. The profiles were calculated in stationary state. A cylindrical symmetry was assumed, using the hypothesis of infinite length, such that one-dimensional profiles were calculated within the construct thickness. The tissue thickness was modelled in three distinct regions (Fig. 2): region 1, facing the inner bioreactor chamber, populated with epithelial cells, region 3 facing the outer bioreactor chamber, populated with chondrocytes, and region 2, acellular, in between. Rates of oxygen consumption, \(V\), were determined as the product of maximal mammalian cells consumption rate, \(V_{\text{max}}\) and cell volume density, \(N_v\)

\[
V = V_{\text{max}} \cdot N_v
\]

The following boundary conditions were assumed. The axial rotation allows both internal and external construct surfaces to remain in contact with oxygen-
saturated films of medium. Thus, the liquid-phase oxygen concentration at the construct surfaces was assigned the value of the equilibrium concentration for oxygen in the media, calculated using Henry’s law constant for O₂ in water at 37 °C (Table 1). The concentration profiles and the oxygen fluxes were assumed to be continuous at all interfaces between regions.

Solving Eq. (1) yielded the oxygen concentration profile through the tissue in each thickness region

\[c(r) = c_1 + \frac{V_1}{4 D_r} \left(r^2 - R_1^2 \right) + a \]
(3)

\[c(r) = c_1 + \frac{V_1}{4 D_r} \left(R_1^2 - R_2^2 \right) + \frac{V_1 R_1^2}{2 D_r} \ln \frac{r}{R_2} + a \]
(4)

\[c(r) = c_1 + \frac{V_1}{4 D_r} \left(R_2^2 - R_3^2 \right) + \frac{V_1 R_2^2}{2 D_r} \ln \frac{R_3}{R_2} + a \]
(5)

\[a = \frac{\ln \left(c_1 - c_1 + \frac{V_1}{4 D_r} \left(r^2 - R_1^2 \right) + a \right)}{\ln \left(c_1 - c_1 + \frac{V_1}{4 D_r} \left(R_1^2 - R_2^2 \right) + a \right) \ln \left(c_1 - c_1 + \frac{V_1}{4 D_r} \left(R_2^2 - R_3^2 \right) + a \right) - \ln \left(c_1 - c_1 + \frac{V_1}{4 D_r} \left(R_3^2 - R_4^2 \right) + a \right)} \]
(6)

The parameter values used in the calculations are given in Table 1. To determine the effect of specific parameters on the profiles, the parameters were varied and the profiles recalculated. To evaluate the effect of cell invasion, the two regions populated with chondrocytes: 125, 250 and 500 /10⁶ cells/mL, and the parameter values assumed for calculation of the critical times were calculated at four values of increasing cell volume density: 20 × 10⁶, 40 × 10⁶, 60 × 10⁶ and 80 × 10⁶ cells/mL.

A second mathematical model was implemented and used to predict oxygen concentration drop in the culture media during those periods when the bioreactor rotation is turned off (for example during construct transfer to the surgical room). Again, transport of oxygen was described by the mass conservation law in diffusion reaction (Eq. (1)), with new assumptions and boundary conditions.

The diffusion term was neglected, in the hypothesis of well mixed medium. Michaelis–Menten kinetics was assumed for the uptake of oxygen by cells, V

\[\frac{dc}{dt} = -V(c) = -V \frac{c}{K_m + c} \]
(7)

where K_m is the Michaelis–Menten constant. Oxygen uptake was assumed to be linear at very low concentrations and it was expressed in total moles

\[\frac{dc}{dt} - V_{in} = -V(c) \]
(8)

where V_in and V are the chamber priming volume and the tissue volume, respectively. For both chambers, the initial condition assumed was 20% oxygen partial pressure and the final condition was a critical 1% partial pressure. Solving Eq. (8) yielded the expression of the time, t_cr, in which the critical oxygen concentration is reached

\[t_{cr} = \left(\frac{K_m \cdot V_{in}}{V \cdot V_{c}} \right) \ln 0.05 \]
(9)

The parameter values assumed for calculation of t_cr are given in Table 1. To determine the effect of specific parameters on t_cr, the parameters were varied and the critical times recalculated, as described above for the oxygen profiles.

2.3. Bone marrow stem cell (BMSC) culture and characterisation

BMSCs were isolated and cultured as previously reported [2]. Plastic-adherent mesenchymal BMSCs were expanded until 90% confluent, in the presence of 5 ng/mL basic fibroblast growth factor (PeproTech, London, UK), before being passaged and re-plated at 1 × 10⁵ cells per 175 cm² flask.

Prior to differentiation and subsequent implantation into the patient, the stem cell characteristics and differentiation potential of the BMSC population were assessed. Phenotypic cell surface markers present on passage 3 cells were analysed by fluorescence-activated cell sorting (FACS) as previously described [19]. Positive expression was defined as the level of fluorescence greater than 98% of the isotype control.

The multi-lineage differentiation potential of the passage 3 BMSCs was assessed by examining their osteogenic, adipogenic and chondrogenic capacities. BMSCs were grown in monolayer culture for 3 weeks in the presence of osteogenic differentiation medium, containing dexamethasone, ascorbic acid 2-phosphate and
then in a solution containing 0.25% trypsin (Sigma–Aldrich), 100 U/mL penicillin and 100 U/mL streptomycin (100 μg/mL). We repeated the dissociation process, and centrifuged the cell suspension at 1000 revolutions per min for 10 min. We resuspended the cell pellet in keratinocyte serum-free medium (Invitrogen), supplemented with 25 μg/mL bovine pituitary extract, 0.4 ng/mL recombinant epidermal growth factor, 0.06 mmol/L calcium chloride, 100 U/mL penicillin and 100 μg/mL streptomycin, seeded the cells in a final volume of 5 mL in 25 cm² flasks, and incubated the cultures at 37 °C, 5% CO₂ for 2–3 days for adherence. Culture medium was then replaced every 5 days. Cytospins of cultured autologous recipient epithelial cells at first passage were subjected to three-colour immunofluorescence histology for cytokeratins 5 and 8, type I collagen and counterstained with DAPI to confirm epithelial phenotype before attachment to the matrix in the bioreactor. Ten fields of view were examined per slide, equating to a minimum of 250 cells.

2.5. Human tracheal decellularization

A 7 cm tracheal segment was retrieved from a transplant donor and rinsed in phosphate buffered saline (PBS) containing 1% penicillin, 1% streptomycin, and 1% amphotericin B (all Sigma, Barcelona, Spain), having removed all loose connective tissue. 25 cycles of the decellularization protocol as previously reported were applied [2]. The tissue was extensively washed with distilled water for 72 h, then incubated in 4% sodium deoxycholate and 2000 kU deoxyribonuclease I in 1 mMOL/L sodium chloride (Sigma Chemicals, Barcelona, Spain). The presence of cellular elements and MHC-positive cells was verified by immunohistochemistry after each cycle. Primary anti-human HLA-D (BD Biosciences, Oxford, UK) and HLA-ABC (Abcam, Cambridge, UK) antibodies (Vectorstain ABC kit, Vector Laboratories, and a peroxidase substrate kit (DAB, Vector Laboratories) were used to detect MHC antigen expression. For negative controls, we omitted the primary antibody. Paraffin-embedded sections of the matrix were also stained with 4′-6-diamidino-2-phenylindole (DAPI, Vector Laboratories, Burlingame, CA, USA) to detect residual nuclei inside the treated tissue. Samples of the treated matrix were fixed with 3% glutaraldehyde (Merk, Darmstadt, Germany) in 0.1 M sodium cacodylate buffer (Prolabo, Paris, France), subjected to critical point drying and gold sputtering, and examined by scanning electron microscope (JSM6490, JEOL, Japan).

2.6. Bioreactor cultivation of the trachea construct

Both cell seeding onto the scaffold and cellularized construct dynamic culture were performed inside the bioreactor, avoiding construct manipulation between the two operations and thus limiting the risk of cell construct contamination. The acellular matrix was positioned onto the cylindrical holder, fixed at both ends with surgical sutures to ensure rotation and positioned inside the bioreactor. The recipient’s cultured cells were detached from culture flasks, diluted with medium (1 x 10^6 cells per mL), and seeded onto the matrix. Chondrocytes were dropped longitudinally on the external surface of the matrix with a microsyringe, while epithelial cells were injected onto the internal surface (Fig. 3). After completion of the seeding process, each chamber was filled up with their respective complete media to totally submerge the seeded matrix. The resultant cellularized construct was maintained in static conditions for 24 h to promote cell adhesion (37 °C, 5% CO₂). Media volumes were then reduced so that nearly half of the matrix was warmed to 37 °C for 45 min and then disrupted it by repeated vigorous pipetting with a plugged glass Pasteur pipette. We neutralised the trypsin solution with complete medium (Dulbecco’s modified Eagle’s medium [DMEM], Invitrogen, Paisley, UK), containing 10% fetal calf serum (FCS, Eurocl), penicillin (100 U/mL), and streptomycin (100 mg/mL). We repeated the dissociation process, and centrifuged the cell suspension at 1000 revolutions per min for 10 min. We resuspended the cell pellet in keratinocyte serum-free medium (Invitrogen), supplemented with 25 μg/mL bovine pituitary extract, 0.4 ng/mL recombinant epidermal growth factor, 0.06 mmol/L calcium chloride, 100 U/mL penicillin and 100 μg/mL streptomycin, seeded the cells in a final volume of 5 mL in 25 cm² flasks, and incubated the cultures at 37 °C, 5% CO₂ for 2–3 days for adherence. Culture medium was then replaced every 5 days. Cytospins of cultured autologous recipient epithelial cells at first passage were subjected to three-colour immunofluorescence histology for cytokeratins 5 and 8, type I collagen and counterstained with DAPI to confirm epithelial phenotype before attachment to the matrix in the bioreactor. Ten fields of view were examined per slide, equating to a minimum of 250 cells.

2.4. Respiratory epithelial cells culture

Respiratory epithelial cells were isolated and cultured as previously reported [2]. Briefly, bronchoscopic biopsy samples were placed in 70% ethanol for 30 s and then in a solution containing 0.25% trypsin (Sigma–Aldrich), 100 U/mL penicillin and 100 μg/mL streptomycin in PBS in a centrifuge tube overnight at 4 °C. At 24 h, we stained the stimulated cells with fresh oil red-O solution. For chondrogenic differentiation, BMSCs were stained with 40 mM alizarin red (Fluka). BMSCs were also grown for 3 weeks in adipogenic differentiation medium, containing hydrocortisone, isobutylmethylxanthine and indomethacin (R&D Systems), and fat vacuoles in the stimulated cells were stained with 40 mM alizarin red (Fluka). BMSCs were also stained insulin–transferrin–selenium (Invitrogen), TGF-

β-glycerol phosphate (R&D Systems, Abingdon, UK), and minerals deposited by stimulated cells were stained with 40 mM alizarin red (Fluka). BMSCs were also grown for 3 weeks in adipogenic differentiation medium, containing hydrocortisone, isobutylmethylxanthine and indomethacin (R&D Systems), and fat vacuoles in the stimulated cells were stained with fresh oil red-O solution. For chondrogenic differentiation, BMSCs were seeded onto fibronectin-coated polyglycolic acid (PGA) scaffolds and cultured on a gently rotating platform for 35 days in medium containing insulin–transferrin–selenium (Invitrogen), TGF-

paraffin-embedded sections of the matrix were also stained with 4′-6-diamidino-2-phenylindole (DAPI, Vector Laboratories, Burlingame, CA, USA) to detect residual nuclei inside the treated tissue. Samples of the treated matrix were fixed with 3% glutaraldehyde (Merk, Darmstadt, Germany) in 0.1 M sodium cacodylate buffer (Prolabo, Paris, France), subjected to critical point drying and gold sputtering, and examined by scanning electron microscope (JSM6490, JEOL, Japan).

2.6. Bioreactor cultivation of the trachea construct

Both cell seeding onto the scaffold and cellularized construct dynamic culture were performed inside the bioreactor, avoiding construct manipulation between the two operations and thus limiting the risk of cell construct contamination. The acellular matrix was positioned onto the cylindrical holder, fixed at both ends with surgical sutures to ensure rotation and positioned inside the bioreactor. The recipient’s cultured cells were detached from culture flasks, diluted with medium (1 x 10^6 cells per mL), and seeded onto the matrix. Chondrocytes were dropped longitudinally on the external surface of the matrix with a microsyringe, while epithelial cells were injected onto the internal surface (Fig. 3). After completion of the seeding process, each chamber was filled up with their respective complete media to totally submerge the seeded matrix. The resultant cellularized construct was maintained in static conditions for 24 h to promote cell adhesion (37 °C, 5% CO₂). Media volumes were then reduced so that nearly half of the matrix was warmed to 37 °C for 45 min and then disrupted it by repeated vigorous pipetting with a plugged glass Pasteur pipette. We neutralised the trypsin solution with complete medium (Dulbecco’s modified Eagle’s medium [DMEM], Invitrogen, Paisley, UK), containing 10% fetal calf serum (FCS, Eurocl), penicillin (100 U/mL), and streptomycin (100 mg/mL). We repeated the dissociation process, and centrifuged the cell suspension at 1000 revolutions per min for 10 min. We resuspended the cell pellet in keratinocyte serum-free medium (Invitrogen), supplemented with 25 μg/mL bovine pituitary extract, 0.4 ng/mL recombinant epidermal growth factor, 0.06 mmol/L calcium chloride, 100 U/mL penicillin and 100 μg/mL streptomycin, seeded the cells in a final volume of 5 mL in 25 cm² flasks, and incubated the cultures at 37 °C, 5% CO₂ for 2–3 days for adherence. Culture medium was then replaced every 5 days. Cytospins of cultured autologous recipient epithelial cells at first passage were subjected to three-colour immunofluorescence histology for cytokeratins 5 and 8, type I collagen and counterstained with DAPI to confirm epithelial phenotype before attachment to the matrix in the bioreactor. Ten fields of view were examined per slide, equating to a minimum of 250 cells.

![Fig. 3. The matrix inside the bioreactor during the seeding process.](image-url)

![Fig. 4. Model predictions of oxygen concentration profiles plotted on the cross section of the trachea tissue construct during rotating bioreactor culture. The plots refer to a cell-populated thickness of (A) 125 μm, (B) 250 μm, and (C) 500 μm. The various curves refer to different cell densities, Nᵥ, expressed in 10⁶ cells/cm³.](image-url)
exposed to the incubator atmosphere (75 mL external, 4 mL internal) and dynamic culture was started at 1.5 revolutions per min (37 °C, 5% CO₂) for 72 h. The external medium (chondrocytes) was changed every 48 h and the internal medium (epithelial cells) every 24 h. At the end of the culture period, the bioreactor rotation was turned off, both chambers were emptied and completely refilled with fresh media and the bioreactor was delivered to the operating room. The graft was then cut to shape and implanted into the patient as a replacement for her left main bronchus. Ethical permission was obtained from the Spanish Transplantation Authority and the Ethics Committee of the Hospital Clinic, Barcelona.

Predictions of the concentration profile within the tissue construct were obtained from Eqs. (3) to (6), in two conditions: during bioreactor culture and post-implantation. The parameter values used for all calculations relevant to bioreactor validation are gathered in Table 1. In both conditions, the thickness of both the cell-populated regions was assumed equal to 30 μm, based on measurements taken on histological sections of the construct. In the implanted condition, at the construct inner surface oxygen was set at 20% partial pressure whereas at the construct outer surface it was assigned a 5% partial pressure value, corresponding to venous blood oxygen tension, 38 mmHg. The critical time in which oxygen partial pressure in the medium drops to 1% in the absence of bioreactor rotation, \(t_c \), was calculated for both chambers using Eq. (9).

2.7. Imaging

Sections of graft surplus to clinical need were fixed with 3% glutaraldehyde (Merk, Darmstadt, Germany) in 0.1 M cacodylate buffer (Prolabo, Paris, France), subjected to critical point drying and gold sputtering, and analysed by scanning electron microscopy (JSM6490, JEOL, Japan) to qualitatively evaluate cell adhesion and proliferation on the matrix preimplantation.

Immediately prior to implantation, the internal surface of the graft was brushed, and again by bronchoscopy at two weeks, as previously reported [2]. At two months, biopsies of the graft wall were taken by flexible bronchoscopy under topical anaesthesia and sedation. Specimens were embedded in OCT (Sakura, CA), snap-frozen and mounted on cork disks cooled over liquid nitrogen, and stored at −80°C. Five micrometer frozen tissue sections were cut on a cryostat (Bright, Huntingdon) and processed for haematoxylin and eosin histology and multiple colour immunofluorescence, as previously described [2,25]. Sections were air dried and fixed for 10 min in ice-cold acetone before blocking for 1 h with 5% human and goat serum. Samples were then incubated at 4°C overnight with optimally titrated primary monoclonal antibodies in two combinations. Stain 1 consisted of mouse anti-human monoclonal antibody to collagen II (Abcam) to confirm the presence of chondrocytes, an anti-human monoclonal antibody to cytokeratins 5 and 8 (BD Biosciences) to identify epithelial cells, and stained for nuclear DNA with DAPI. Stain 2 used the same antibody to cytokeratins 5 and 8 (BD Biosciences) plus an anti-human HLA-DR, DP, DQ (PharMingen) to identify MHC class II positive cells (antigen-presenting cells and vascular endothelium). Sections were washed in PBS and incubated for 1 h at room temperature with goat anti-mouse isotype-specific secondary fluorochrome conjugates (Southern Biotechnology Associates Inc, USA). Where necessary, a three-stage procedure used biotinylated isotype-specific secondary antibodies followed by AMCA Avidin D (Vector laboratories Inc, USA). Sections were mounted with Vectashield® (Vector laboratories Inc, USA) and sealed with nail varnish. Multiple fields at 20× magnification were digitized and grey scale images captured on a Leica DMRA microscope using a Hamamatsu Orca-ER camera and Q-Fluo software (Leica, UK).

3. Results

3.1. Oxygenation

Modelling predictions of oxygen profiles in the trachea tissue construct during rotating bioreactor culture are presented in Fig. 4. Oxygen concentration in the tissue decreases for increasing colonization depth and density of cells. At a cell-colonised depth of 125 μm on both tissue sides, oxygen concentration is maintained above 0.18 mm (18.5% partial pressure or 138 mmHg) at all cell

Fig. 5. Multi-lineage differentiation potential of BMSCs. Expanded BMSCs from passage 3 were incubated in osteogenic or adipogenic differentiation medium for 3 weeks. Minerals characteristic of osteogenic differentiation were stained with alizarin red (A) and fat vacuoles characteristic of adipocytes were stained with oil red-O (B). Photographs are shown at 10× magnification. BMSCs were seeded onto PGA scaffolds and cultured in chondrogenic differentiation medium for 35 days. The macroscopic appearance of duplicate tissue-engineered cartilage constructs is shown in (C) and the biochemical analysis of the protein content of the constructs is shown in (D) (PG = proteoglycan).
densities. At cell-colonised depths of 500 μm on both tissue sides, corresponding to a full-thickness cell invasion, oxygen concentration drops to a minimum level of 0.04 mM (4.1% partial pressure or 31 mmHg) at a cell density of 60×10^6 cells/cm3, while zero concentration values are predicted in the internal regions of the construct at 80×10^6 cells/cm3.

Modelling predictions of the critical time in which a 95% drop in oxygen concentration is reached in the media filling the static bioreactor chambers are given in Table 2. The critical time decreases for increasing cell-colonised depths and cell densities. Values range from around 4 h to 13 min and from 70 to 4 h, in the internal and external bioreactor chambers respectively.

3.2. Characterisation of BMSC population

BMSCs were isolated from an autologous bone marrow aspirate by their ability to adhere to tissue culture plastic. The cells were allowed to proliferate until a sufficient number were obtained for seeding onto the decellularised donor trachea. Prior to seeding, passage 3 BMSCs were characterized to assess the quality of the stem cell preparation.

FACS analysis was used to assess the population for phenotypic cell surface markers associated with multipotent stem cells. In agreement with previously published results [19], the population was positive for CD105 (99.3%), STRO-1 (30.5%), VCAM-1A (28.3%), CD49a (25.8%), bone morphogenetic protein receptor 1A (1.9%) and CD117 (1.3%). As expected the cells were negative for CD34, a haematopoietic stem cell marker.

The multi-lineage differentiation potential of the BMSCs was assessed by examining their chondrogenic, osteogenic and adipogenic capacities. The BMSC population was successfully differentiated into both osteoblasts, resulting in cultures rich in minerals, and adipocytes, as shown by the presence of fat vacuoles stained with oil red-O (Fig. 5A and B). In addition, a white, shiny tissue resembling hyaline cartilage at the macroscopic level was generated when BMSCs were seeded onto PGA scaffolds and cultured in

![Image](https://example.com/image.png)

Fig. 6. Tracheal matrix after 25 cycles of the detergent-enzymatic treatment. As revealed by DAPI staining (A; 50×), only few nuclei were still present inside the cartilage rings. A mild immunoreactivity against HLA-DR, HLA-DP, HLA-DQ antigens was visible in small areas (B; 200×). Interruptions of the basal lamina characterized the luminal surface (C, D), whereas an irregular network of collagen fibers were present on the external one (E, F).
chondrogenic differentiation medium for 35 days (Fig. 5C). When duplicate tissue-engineered cartilage constructs were analysed for several matrix proteins, amounts of proteoglycan and type II collagen, the two major constituents of adult hyaline cartilage, were similar to previously published results [20]. Levels of type I collagen, which is virtually absent in normal, mature hyaline cartilage, were minimal (Fig. 5D).

Having shown that the BMSC population displayed cell surface marker and multipotential characteristics of stem cells, passage 3 cells were induced to differentiate into chondrocytes by stimulating with TGF-β3, dexamethasone and insulin in the presence of parathyroid hormone-related peptide to inhibit hypertrophy [2,20]. The cells were then seeded onto the outer surface of the decellularised donor trachea using our bioreactor.

3.3. Respiratory epithelial cells culture

All cells in epithelial culture stained positive for cytokeratins 5 and 8 immediately before seeding and had epithelial morphology on light microscopy of cultured cells. We did not detect any fibroblasts morphologically or by immunofluorescence histology looking for cells positive for type I collagen. As at least 250 cells were examined per slide, this represents greater than 99.6% purity of the epithelial cell culture.

3.4. Human trachea decellularization

After 25 cycles of decellularization, epithelial and glandular cells were completely removed from the tracheal matrix, while only a few chondrocytes were still visible (Fig. 6A). Treated tissue was free from HLA-A, HLA-B, and HLA-C antigens, although low amounts of focal MHC class II expression were still seen in a few areas (Fig. 6B). High magnification of the luminal surface revealed that the basal lamina was partially maintained (Fig. 6C and D). Indeed, an alternation of smooth areas and matrix fibers was well visible. The external side of tracheal matrix was characterized by bundles of fibers irregularly arranged (Fig. 6E and F).

3.5. Bioreactor cultivation of the trachea construct

The procedure described to seed chondrogenic BMSCs and epithelial cells on either side of a long tubular tracheal matrix allowed easy and highly efficient cell seeding. The bioreactor worked properly and no contamination was observed during the whole culture period. Autoclavability, ease of handling under sterile conditions, reliability and precision ensured full compatibility of the device with the GLP rules.

Modelling predictions of oxygen profiles in the tracheal tissue construct during rotating bioreactor culture and post-implantation are presented in Fig. 7. Oxygen in the tissue is maintained at 20% partial pressure during culture and ranges linearly from 20% to 5% partial pressure (38 mmHg) after implantation. The critical time in which a 95% oxygen drop is reached in the media filling the static bioreactor chambers was around 7 h for the inner chamber and 83 h for the outer chamber (Table 2). Therefore, a maximum time of 7 h was available to safely deliver the construct to the operating room and maintain it in static conditions until the time of implant.

3.6. Graft outcomes

As previously reported [2], brushings of the graft immediately before implantation showed that both cell types remained in significant numbers and were viable, confirmed by scanning electron microscopy analysis of the graft surplus (Fig. 8). This was also the case two days post-implantation [2]. At two months, graft biopsy showed vigorous angiogenesis and remodeling (Fig. 9). Immunofluorescence histology confirmed the presence of angiogenesis and showed reconstitution of epithelium, the continued presence of viable chondrocytes, and a reappearance of the mucosal lymphoid cells that typically densely populate normal tracheal mucosa [26]. Results of the recipient's lung function tests are as high at one year as they were at 4 months [2]. She is fully active and well, and caring for her two children.

4. Discussion

In response to the need to replace pathological hollow organs, bioengineered products offer potential advantages over conventional treatments or allografts. Solutions using autologous cells, whether primary or stem cell-derived, offer functional restoration without the need for immunosuppression. Cells can be obtained from small biopsies, expanded and differentiated as necessary with
high yield and purity. Starting with tissues such as skin [27], and moving onto more complex hollow organs including more than one cell type, such as bladder [1] and trachea [2], tissue-engineered constructs, populated with autologous-derived cells, are showing promising results in early clinical trials. However, as structure and function becomes more complicated, the in vitro culture environment assumes an increasingly important role. It is necessary to address the diverse demands of more than one cell type, whilst increasing construct size raises serious questions about the ability of the environment to deliver adequate oxygen concentrations to all cells.

Bioreactors have been designed to provide solutions to a wide range of questions relating to cell and tissue engineering. Altering bioreactor microenvironments, adding control of medium flow and mixing, may guide structural and functional properties of tissues [28–30]. Mechanical cues may be introduced to stimulate cells to produce specific components [31–33], or align cells in specific functionally relevant ways [34,35]. As the goal of such research is to produce clinically useful products, bioreactors can also provide quality-assured and cost-effective manufacturing processes, with full compliance to relevant regulatory frameworks and the possibility of smooth scale-up/-out through automation and robotics. In this context, the present article focuses on the design and development of a bioreactor for long tubular construct engineering that allows double seeding and culturing on both the inner and the outer surface of the matrix.

Thanks to the ultrastructure of biological acellular trachea matrices, two separate chambers are obtained inside and outside the tubular scaffold, and the two cell types can be fed with their proper culture medium. When using permeable porous scaffolds, the great advantage of double seeding from both the inner and the outer surface of a matrix in our double-chamber bioreactor results in a much better cell colonization throughout the scaffold thickness (unpublished data), overcoming another generally limiting aspect of traditional static culture techniques. Moreover, the bioreactor rotates the construct around its longitudinal axis providing proper oxygenation to the three-dimensional structure and improves mass transport between the culture media and the adhering cells.

Gradients of oxygen and nutrients exist in engineered tissue, due to the balance between transport and rates of cellular consumption. Due to the difficulty of monitoring these gradients within tissue [36], predictive mathematical models have been developed for various bioreactor-cultured tissues, such as cardiac muscle [37], bone [38,39] and cartilage [40–42]. Oxygen is the focus of most of these models, due to its limited solubility in aqueous media. In this context, to further validate the bioreactor design, we explored the feasibility of providing adequate oxygenation to cells within a thick scaffold by using a mathematical transport model. This was used to predict oxygen concentration in the bioreactor-cultured trachea construct and in the culture media, as a function of construct geometry, thickness of cell invasion into the scaffold wall, cell densities and oxygen consumption rates. The model is designed to compare representative culture configurations and operating conditions of the rotating bioreactor. The consumption rates assumed here, 0.1 and
0.2 μmol/10⁶ cells/h, were in the range previously reported for primary cells in culture, 0.1–0.5 μmol/10⁶ cells/h [15]. In the construct, the assumption that cells consumed oxygen uniformly at a zero-order rate was found to be an overestimate. Indeed, our model predictions demonstrated that oxygen concentrations do not fall to critical values at any time under a wide range of operating conditions. These data provide important validation of the rotating bioreactor as an adequate environment for the development of thick-walled, cellular, tissue-engineered hollow organ implants. Compared to previously derived finite element models [37,40,41], our analytical model was conceived in a parametric form, in order to single out critical bioreactor operating conditions, such as the culture of full-thickness cell-populated constructs at very high cell densities.

Currently, the major limitation of our rotating bioreactor is the low level of automation of the system. An automatic medium conditioning and exchange system is desirable in order to minimize contamination risks and protect homeostasis. This would operate unattended over a period of days or weeks, whilst permitting intermittent, sterile evaluation of pH, nutrient or waste concentration. A system controller would also be useful to manage the tissue-engineering process. Monitoring the data provided by sensors, allied to closed loop feedback, will allow more control and, thereby, reproducibility of expansion, differentiation and migration of cells within the scaffold.

The most innovative outcome of our work lies in the fact that using the developed bioreactor we made possible to properly re-personalise a donor trachea and to successfully perform the first engineered airway transplantation without the need of any immunosuppressive therapies. The graft is still functioning well and there is no sign of rejection at one year post-implantation. Cytological and histological studies were necessarily limited by the need to avoid trauma to the graft. However, we have confirmed vigorous angiogenesis, by laser Doppler recordings from two weeks, and at biopsy at two months.

We have also confirmed the persistence of viable chondrocytes, and a layer of viable epithelial cells at two months post-surgery. However, the epithelial layer, whilst macroscopically intact and clearing mucus by this time, was microscopically discontinuous. Thus, further work to improve epithelial cell coverage of the internal surface of the graft pre-operatively is necessary, and this is an important design consideration for further refinements of the bioreactor. Furthermore, we hypothesize that the application of flow stimuli to the internal compartment of the bioreactor will encourage appropriate alignment and function of cilia prior to implantation, thereby initiating appropriate clearance of mucus from the first post-operative day.

5. Conclusions

Following mathematical modelling of hypothetical cellular oxygen requirements, we designed a double-chamber bioreactor to support hollow organ (tracheal) recellularized implants. We confirmed that the bioreactor configuration allowed oxygenation to be maintained despite the thickness of the implant wall, and that two autologous cell types with disparate media requirements could be supported, expanded and would migrate effectively on the scaffold. Ultimate validation of the bioreactor’s effectiveness was provided by its central role in the first stem cell-derived, tissue-engineered organ, which continues to function well ten months post-implantation. Further refinements will be necessary to permit scale-up and full clinical trials, as well to explore hypothetical ways of improving graft production, such as encouraging angiogenesis and orientated ciliary function.

Acknowledgements

This work was done with grant support from the Ministero dell’Istruzione, dell’Università e della Ricerca, Italy, the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III, Fondo de Investigación Sanitaria (FIS) (PI050987), Spain, the Charles Court-tenay-Cowlin Fund, University of Bristol, UK (Dr. Rees), the UK Arthritis Research Campaign (APH) and the James Tudor Foundation (SCD). Thanks go to Dr. Simon Rose, Pathology Department, Royal United Hospital Bath NHS Trust for haematoxylin and eosin studies of human implant tissue post-operatively.

References

